Про семейное счастье и отношения

Химия подготовка к ЗНО и ДПА
Комплексное издание

ЧАСТЬ И

ОБЩАЯ ХИМИЯ

ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВА

Степень окисления

Степень окисления - это условный заряд на атоме в молекуле или кристалле, который возник на нем, когда бы все полярные связи, созданные им, имели ионный характер.

На отличие от валентности, степени окисления может быть положительным, отрицательным или равняться нулю. В простых ионных соединениях степень окисления совпадает с зарядами ионов. Например, в натрий хлориде NaCl (Na + Cl - ) Натрий имеет степень окисления +1, а Хлор -1, в кальций оксиде СаО (Са +2 О -2) Кальций проявляет степень окисления +2, а Оксисен - -2. Это правило распространяется на все основные оксиды: степень окисления металлического элемента равен заряду иона металла (Натрия +1, Бария +2, Алюминия +3), а степень окисления Кислорода равна-2. Степень окисления обозначают арабскими цифрами, которые ставят над символом элемента, подобно валентности, причем вначале указывают знак заряда, а потом его численное значение:

Если модуль степени окисления равна единице, то число «1» можно не ставить и писать только знак: Na + Cl - .

Степень окисления и валентность - родственные понятия. Во многих соединениях абсолютная величина степени окисления элементов совпадает с их валентностью. Однако существует немало случаев, когда валентность отличается от степени окисления.

В простых веществах - неметалах существует ковалентная неполярная связь, совместная электронная пара смещается к одному из атомов, поэтому степень окисления элементов в простых веществ всегда равна нулю. Но атомы друг с другом связаны, то есть проявляют определенную валентность, как, например, в кислороде валентность Кислорода равна II, а в азоте валентность Азота - III:

В молекуле водород пероксида валентность Кислорода также равна II, а Водорода - И:

Определение возможных степеней окисления элементов

Степени окисление, какие элементы могут проявлять в различных соединениях, в большинстве случаев можно определить по строению внешнего электронного уровня или по местом элемента в Периодической системе.

Атомы металлических элементов могут только отдавать электроны, поэтому в соединениях они проявляют положительные степени окисления. Его абсолютное значение во многих случаях (за исключением d -элементов) равен числу электронов на внешнем уровне, то есть номера группы в Периодической системе. Атомы d -элементов могут также отдавать электроны с передзовнішнього уровня, а именно - с незаполненных d -орбиталей. Поэтому для d -элементов определить все возможные степени окисления значительно сложнее, чем для s - и р-элементов. С уверенностью можно утверждать, что большинство d -элементов проявляют степень окисления +2 благодаря электронам внешнего электронного уровня, а максимальная степень окисления в большинстве случаев равен номеру группы.

Атомы неметаллических элементов могут проявлять как положительные, так и отрицательные степени окисление, в зависимости от того, с атомом какого элемента они образуют связь. Если элемент более электроотрицательным, то он проявляет негативное степень окисления, а если менее электроотрицательный - положительный.

Абсолютное значение степени окисления неметаллических элементов можно определить по строению внешнего электронного слоя. Атом способен принять столько электронов, чтобы на его внешнем уровне расположилось восемь электронов: неметаллические элементы VII группы принимают один электрон и проявляют степень окисления -1, VIгруппы - два электроны и проявляют степень окисления -2 и т.д.

Неметаллические элементы способны отдавать разное число электронов: максимум столько, сколько расположено на внешнем энергетическом уровне. Иначе говоря, максимальный степень окисления неметаллических элементов равна номеру группы. Благодаря промотуванню электронов на внешнем уровне атомов число неспаренных электронов, которые атом может отдавать в химических реакциях, бывает разным, поэтому неметаллические элементы способны обнаруживать различные промежуточные значения степени окисления.

Возможны степени окисления s - и р-элементов

Группа ПС

Высшую степень окисления

Промежуточный степень окисления

Ниже степень окисления

Определение степеней окисления в соединениях

Любая электронейтральная молекула, поэтому сумма степеней окисления атомов всех элементов должна равняться нулю. Определим степень окисления в сульфур(И V ) оксиде SO 2 тауфосфор(V ) сульфіді P 2 S 5 .

Сульфур(И V ) оксид SO 2 образован атомами двух элементов. Из них электроотрицательности большая у Кислорода, поэтому атомы Кислорода будут иметь негативный степень окисления. Для Кислорода он равен-2. В этом случае Сульфур оказывает положительное степень окисления. В различных соединениях Сульфур может проявлять разные степени окисления, поэтому в этом случае его необходимо вычислить. В молекуле SO 2 два атома Кислорода со степенью окисления -2, поэтому общий заряд атомов Кислорода равна-4. Для того, чтобы молекула была електронейтральною, атом Серы имеет полностью нейтрализовать заряд обоих атомов Кислорода, поэтому степень окисления Серы равна +4:

В молекуле фосфор(V ) сульфида P 2 S 5 более електронегативним элементом является Сульфур, то есть он проявляет негативное степень окисления, а Фосфор - положительный. Для Серы негативный степень окисления составляет только 2. Вместе пять атомов Серы несут отрицательный заряд, равный-10. Поэтому два атома Фосфора имеют нейтрализовать этот заряд с общим зарядом +10. Поскольку атомов Фосфора в молекуле два, то каждый должен иметь степень окисления +5:

Сложнее вычислять степень окисления не в бинарных соединениях - солях, основаниях и кислотах. Но для этого также следует воспользоваться принципом электронейтральности, а еще помнить о том, что в большинстве соединений степень окисления Кислорода составляет -2, Водорода +1.

Рассмотрим это на примере калий сульфата K 2 SO 4 . Степень окисления Калия в соединениях может быть только +1, а Кислорода -2:

С принципа электронейтральности вычисляем степень окисления Серы:

2(+1) + 1 (х) + 4 (-2) = 0, откуда х = +6.

При определении степеней окисления элементов в соединениях следует придерживаться таких правил:

1. Степень окисления элемента в простом веществе равна нулю.

2. Фтора - наиболее электроотрицательный химический элемент, поэтому степень окисления Фтора в всех соединениях равна-1.

3. Оксиген - наиболее электроотрицательный элемент после Фтора, поэтому степень окисления Кислорода во всех соединениях, кроме фторидов, отрицательный: в большинстве случаев он равна -2, а в пероксидах - -1.

4. Степень окисления Водорода в большинстве соединений равна +1, а в соединениях с металлическими элементами (гидридах) - -1.

5. Степень окисления металлов в соединениях всегда положительный.

6. Более электроотрицательный элемент всегда имеет отрицательный степень окисления.

7. Сумма степеней окисления всех атомов в молекуле равна нулю.


Химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип.

Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе - заряду иона .

1. Степени окисления металлов в соединениях всегда положительные.

2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au +3 (I группа), Cu +2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru .

3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:

  • если с атомом металла, то степень окисления отрицательная;
  • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.

4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.

5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.

Элементы с неизменными степенями окисления.

Элемент

Характерная степень окисления

Исключения

Гидриды металлов: LIH -1

Степенью окисления называют условный заряд частицы в предположении, что связь полностью разорвана (имеет ионных характер).

H - Cl = H + + Cl - ,

Связь в соляной кислоте ковалентная полярная. Электронная пара в большей степени смещена в сторону атома Cl - , т.к. он более электроотрицацельный элемент.

Как определить степень окисления?

Электроотрицательность - это способность атомов притягивать к себе электроны других элементов.

Степень окисления указывается над элементом: Br 2 0 , Na 0 , O +2 F 2 -1 , K + Cl - и т.д.

Она может быть отрицательной и положительной.

Степень окисления простого вещества (несвязанное, свободное состояние) равна нулю.

Степень окисления кислорода у большинстве соединений равна -2 (исключение составляют пероксиды Н 2 О 2 , где она равна -1 и соединения с фтором - O +2 F 2 -1 , O 2 +1 F 2 -1 ).

- Степень окисления простого одноатомного иона равна его заряду: Na + , Ca +2 .

Водород в своих соединениях имеет степень окисления равную +1 (исключения составляют гидриды - Na + H - и соединения типа C +4 H 4 -1 ).

В связях «металл-неметалл» отрицательную степень окисления имеет тот атом, который обладает большей электрооприцательностью (данные об элеткроотрицательности приведены в шкале Полинга): H + F - , Cu + Br - , Ca +2 (NO 3 ) - и т.д.

Правила определения степени окисления в химических соединениях.

Возьмем соединение KMnO 4 , необходимо определить степень окисления у атома марганца.

Рассуждения:

  1. Калий - щелочной металл, стоящий в I группе периодической таблицы , в связи с чем, имеет только положительную степень окисления +1.
  2. Кислород , как известно, в большинстве своих соединений имеет степень окисления -2. Данное вещество не является пероксидом, а значит, - не исключение.
  3. Составляет уравнение:

К + Mn X O 4 -2

Пусть Х - неизвестная нам степень окисления марганца.

Количество атомов калия - 1, марганца - 1, кислорода - 4.

Доказано, что молекула в целом электронейтральна, поэтому ее общий заряд должен быть равен нулю.

1*(+1) + 1*(X ) + 4(-2) = 0,

Х = +7,

Значит, степень окисления марганца в перманганате калия = +7.

Возьмем другой пример оксида Fe 2 O 3 .

Необходимо определить степень окисления атома железа.

Рассуждение:

  1. Железо - металл, кислород - неметалл, значит, именно кислород будет окислителем и иметь отрицательный заряд. Мы знаем, что кислород имеет степень окисления -2.
  2. Считаем количества атомов: железа - 2 атома, кислорода - 3.
  3. Составляем уравнение, где Х - степень окисления атома железа:

2*(Х) + 3*(-2) = 0,

Вывод: степень окисления железа в данном оксиде равна +3.

Примеры. Определить степени окисления всех атомов в молекуле.

1. K 2 Cr 2 O 7 .

Степень окисления К +1 , кислорода О -2 .

Учитывая индексы: О=(-2)×7=(-14), К=(+1)×2=(+2).

Т.к. алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, то число положительных степеней окисления равно числу отрицательных. Степени окисления К+О=(-14)+(+2)=(-12).

Из этого следует, что у атома хрома число положительных степеней равно 12, но атомов в молекуле 2, значит на один атом приходится (+12):2=(+6). Ответ: К 2 + Cr 2 +6 O 7 -2 .

2. (AsO 4) 3- .

В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е. - 3. Составим уравнение: х+4×(- 2)= - 3 .

Ответ: (As +5 O 4 -2) 3- .

Определение

Электроотрицательность (ЭО) $\chi$ (хи) - величина, характеризующая способность атома элемента притягивать к себе электроны при образовании химической связи с другими атомами.

Современное понятие об электроотрицательности атомов введено американским учёным Лайнусом Полингом в 1932 году. Теоретическое определение электроотрицательности было разработано позднее. Американский физик Роберт Малликен предложил рассчитывать электроотрицательность как полусумму потенциала ионизации и сродства к электрону:

$\chi_{\textrm{М}} = \dfrac {I + A_e}{2},$

где $I$ - потенциал ионизации, $A_e$ - энергия сродства к электрону.

Помимо шкалы Малликена, описанной выше, существует более 20-ти различных других шкал электроотрицательности (в основу расчёта значений которых положены разные свойства веществ), среди которых шкала Л. Полинга (основана на энергии связи при образовании сложного вещества из простых), шкала Олреда-Рохова (основана на электростатической силе, действующей на внешний электрон) и др.

В настоящее время существует много способов, позволяющих количественно оценить величину электроотрицательности атома. Значения электроотрицательностей элементов, рассчитанные разными способами, как правило, не совпадают даже при введении поправочных коэффициентов. Однако общие тенденции в изменении $\chi$ по Периодической системе сохраняются. Проиллюстрировать это можно, сравнив две наиболее широко использующиеся шкалы - по Полингу и по Олреду-Рохову (жирным шрифтом выделены значения ЭО по шкале Полинга, курсивом - по шкале Олреда-Рохова; $s$-элементы выделены розовым цветом, $p$-элементы - жёлтым, $d$-элементы - зелёным, $f$-элементы - голубым):

Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности, от валентного состояния атома, формальной степени окисления, типа соединения, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других.

Электроотрицательность связана с окислительно-восстановительной активностью элемента. Соответственно, чем больше электроотрицательность элемента, тем сильнее его окислительные свойства.

Чем более приближена электронная оболочка данного атома к электронной оболочке инертного газа, тем выше его электроотрицательность. Иными словами, в периодах по мере заполнения внешнего энергетического уровня электронами (то есть слева направо) электроотрицательность возрастает, так как возрастает номер группы и количество электронов на внешнем энергетическом уровне.

Чем дальше оказываются валентные электроны от ядра, тем слабее они удерживаются и тем ниже способность атома притягивать к себе дополнительные электроны. Таким образом, в группах электроотрицательность возрастает с уменьшением атомного радиуса, то есть снизу вверх. Элементом с наибольшей электроотрицательностью является фтор, а с наименьшей - цезий. Типичные неметаллы, таким образом, имеют высокие значения электроотрицательности, а типичные металлы - низкие.

ВАЛЕНТНОСТЬ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

Валентность характеризует способность атомов данного химического элемента к образованию химических связей.

Валентность определяет число химических связей, которыми атом связан с другими атомами в молекуле.

Ранее валентность определяли как число атомов одновалентного элемента, с которым соединяется один атом данного элемента. Так, водород считается одновалентным элементом. В молекуле $HBr$ атом брома соединяется с одним атомом водорода, а атом серы в молекуле $H_2S$ - с двумя атома водорода. Следовательно, бром в $HBr$ одновалентен, а сера в $H_2S$ двухвалентна. Значения валентности для различных элементов могут изменяться от одного до восьми. Так, в хлорной кислоте $HClO_4$ элемент водород - одновалентный, кислород - двухвалентный, хлор - семивалентный. В молекуле оксида ксенона $XeO_4$ валентность ксенона достигает значения восемь. Все это наглядно демонстрируют следующие структурные формулы, в которых показан порядок связи атомов в молекуле друг с другом в соответствии с их валентностями (причем каждой единице валентности отвечает один валентный штрих):

Определение

В настоящее время под валентностью понимают число электронных пар, которыми данный атом связан с другими атомами.

Валентность (или ковалентность) определяется числом ковалентных связей, образуемых данным атомом в соединении . При этом учитываются как ковалентные связи, образованные по обменному механизму, так и ковалентные связи, образованные по донорно-акцепторному механизму.

Валентность не имеет знака!

Поскольку существует два механизма образования ковалентной связи (механизм спаривания электронов и донорно-акцепторный механизм), то валентные возможности атомов зависят от:

  • числа неспаренных электронов в данном атоме;
  • от наличия вакантных атомных орбиталей во внешнем уровне;
  • от числа неподеленных электронных пар.

Валентность элементов первого периода не может превышать I, валентность элементов второго периода не может превышать IV. Начиная с третьего периода валентность элементов может увеличиваться до VIII (например, $XeO_4$) в соответствии с номером группы, в которой находится элемент.

Рассмотрим, например, валентные возможности атомов ряда элементов.

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ ВОДОРОДА

Атом водорода имеет единственный валентный электрон, что отражает электронная формула $1s^1$ или графическая формула:

За счет этого неспаренного электрона атом водорода может образовать только одну ковалентную связь с каким-либо другим атомом по механизму спаривания (или обобществления) электронов. Другие валентные возможности у атома водорода отсутствуют. Поэтому водород проявляет единственную валентность, равную I.

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ ФОСФОРА

Элемент фосфор находится в третьем периоде, в главной подгруппе пятой группы. Электронная конфигурация его валентных электронов $3s^23p^3$ или

Являясь аналогом азота, фосфор также может проявлять валентности I, II, III и IV. Но так как для элементов третьего периода доступны вакантные $3d$-орбитали, атом фосфора может перейти в возбужденное состояние, переведя один из $s$-электронов на $d$-подуровень:

Таким образом, атом фосфора может образовать пять ковалентных связей по обменному механизму. Максимальную валентность V фосфор проявляет в молекулах $PF_5$, $H_3PO_4$, $POCl_3$ и др.:

СТЕПЕНЬ ОКИСЛЕНИЯ

Определение

Степень окисления - это условный заряд атома в соединении в предположении, что все связи в этом соединении ионные (т.е. все связывающие электронные пары полностью смещены к атому более электроотрицательного элемента).

Другими словами, степень окисления - это число, которое показывает, сколько электронов отдал (заряд «+») или принял (заряд «–») атом при образовании химической связи с другим атомом.

В отличие от валентности, степень окисления имеет знак - она может быть отрицательной, нулевой или положительной.

Для подсчета степеней окисления атомов в соединении имеется ряд простых правил:

  • Степень окисления элемента в составе простого вещества принимается равной нулю. Если вещество находится в атомарном состоянии, то степень окисления его атомов также равна нулю.
  • Ряд элементов проявляют в соединениях постоянную степень окисления. Среди них фтор (−1), щелочные металлы (+1), щелочно-земельные металлы, бериллий, магний и цинк (+2), алюминий (+3).
  • Кислород, как правило, проявляет степень окисления −2 за исключением пероксидов $H_2O_2$ (−1), супероксидов $MO_2$ ($-\frac{1}{2}$), озонидов $M^IO_3,\ M^{II}(O_3)_2$ ($-\frac{1}{3}$) и фторида кислорода $OF_2$ (+2).
  • Водород в соединении с металлами (в гидридах) проявляет степень окисления −1, а в соединениях с неметаллами, как правило, +1 (кроме $SiH_4,\ B_2H_6$).
  • Алгебраическая сумма степеней окисления всех атомов в молекуле должна быть равной нулю, а в сложном ионе - заряду этого иона.

Высшая положительная степень окисления равна, как правило, номеру группы элемента в периодической системе.

Так, сера (элемент VIA группы), проявляет высшую степень окисления +6, азот (элемент V группы) - высшую степень окисления +5, марганец - переходный элемент VIIБ группы - высшую степень окисления +7. Это правило не распространяется на элементы побочной подгруппы первой группы, степени окисления которых обычно превышают +1, а также на элементы побочной подгруппы VIII группы. Также не проявляют своих высших степеней окисления, равных номеру группы, элементы кислород и фтор.

Низшая отрицательная степень окисления для элементов-неметаллов определяется вычитанием номера группы из числа 8.

Так, сера (элемент VIA группы), проявляет низшую степень окисления −2, азот (элемент V группы) - низшую степень окисления −3.

На основании приведенных выше правил можно найти степень окисления элемента в любом веществе.

$+1 + x = 0 \hspace{1.5cm} +2 + 2x = 0 \hspace{1.5cm} +3 + 3x = 0$

$x = - 1 \hspace{2.3 cm} x = - 1 \hspace{2.6 cm} x = - 1$

$\overset{x}(Cl\overset{-2}{O_3})^{-1}$

образовывать определённое число с атомами других элементов.

    Валентность атомов фтора всегда равна I

    Li, Na, K, F, H , Rb , Cs - одновалентны;

    Be, Mg, Ca, Sr, Ba, Cd, Zn, O , Ra - обладают валентностью, равной II;

    Al, B Ga, In - трехвалентны.

    Максимальная валентность для атомов данного элемента совпадает с номером группы, в которой он находится в Периодической системе. Например, для Са это II , для серы - VI , для хлора - VII . Исключений из этого правила тоже немало:

Элемент VI группы, О, имеет валентность II (в H 3 O+ - III);
- одновалентен F(вместо
VII );
- двух- и трехвалентно обычно железо, элемент VIII группы;
- N может удержать возле себя только 4 атома, а не 5, как следует из номера группы;
- одно- и двухвалентна медь, расположенная в I группе.

    Минимальное значение валентности для элементов, у которых она переменная, определяется по формуле: № группы в ПС - 8. Так, низшая валентность серы 8 - 6 = 2, фтора и других галогенов - (8 - 7) = 1, азота и фосфора - (8 - 5)= 3 и так далее.

    В соединении сумма единиц валентности атомов одного элемента должна соответствовать суммарной валентности другого (или общее число валентностей одного химического элемента равно общему числу валентностей атомов другого химического элемента). Так, в молекуле воды Н-О-Н валентность Н равна I, таких атомов 2, значит, всего единиц валентности у водорода 2 (1×2=2). Такое же значение имеет и валентность кислорода.

    При соединении металлов с неметаллами последние проявляют низшую валентность

    В соединении, состоящем из атомов двух видов, элемент, расположенный на втором месте, обладает низшей валентностью. Так при соединении неметаллов между собой, низшую валентность проявляет тот элемент, который находится в ПСХЭ Менделеева правее и выше, а высшую соответственно левее и ниже.

    Валентность кислотного остатка совпадает с количеством атомов Н в формуле кислоты, валентность группы OH равна I.

    В соединении, образованном атомами трех элементов, тот атом, который находится в середине формулы, называют центральным. Непосредственно с ним связаны атомы О, а с кислородом образуют связи остальные атомы.

Правила определения степени окисления химических элементов.

Степень окисления - это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что соединения состоят только из ионов. Степени окисления могут иметь положительное, отрицательное или нулевое значение, причём знак ставится перед числом:-1, -2, +3, в отличие от заряда иона, где знак ставится после числа.
Степени окисления металлов в соединениях всегда положительные, высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключая некоторые элементы: золото Au
+3 (I группа), Cu +2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru).
Степени неметаллов могут быть как положительными так и отрицательными, в зависимости от того с каким атомом он соединён: если с атомом металла то всегда отрицательная, если с неметаллом-то может быть и +, и -. При определении степеней окисления необходимо использовать следующие правила:

    Степень окисления любого элемента в простом веществе равна 0.

    Сумма степеней окисления всех атомов, входящих в состав частицы (молекул, ионов и т. д.) равна заряду этой частицы.

    Сумма степеней окисления всех атомов в составе нейтральной молекулы равна 0.

    Если соединение образовано двумя элементами, то у элемента с большей электроотрицательностью степень окисления меньше нуля, а у элемента с меньшей электроотрицательностью – больше нуля.

    Максимальная положительная степень окисления любого элемента равна номеру группы в периодической системе элементов, а минимальная отрицательная равна N– 8, где N – номер группы.

    Степень окисления фтора в соединениях равна -1.

    Степень окисления щелочных металлов (лития, натрия, калия, рубидия, цезия) равна +1.

    Степень окисления металлов главной подгруппы II группы периодической системы (магния, кальция, стронция, бария) равна +2.

    Степень окисления алюминия равна +3.

    Степень окисления водорода в соединениях равна +1 (исключение – соединения с металлами NaH, CaH 2 , в этих соединениях степень окисления у водорода равна -1).

    Степень окисления кислорода равна –2 (исключения – перекиси H 2 O 2 , Na 2 O 2 , BaO 2 в них степень окисления кислорода равна -1, а в соединении с фтором - +2).

    В молекулах алгебраическая сумма степеней окисления элементов с учётом числа их атомов равна 0.

Пример. Определить степени окисления в соединении K 2 Cr 2 O 7 .
У двух химических элементов калия и кислорода степени окисления постоянны и равны соответственно +1 и -2. Число степеней окисления у кислорода равна (-2)·7=(-14), у калия (+1)·2=(+2). Число положительных степеней окисления равно числу отрицательных. Следовательно (-14)+(+2)=(-12). Значит у атома хрома число положительных степеней равно 12, но атомов 2, значит на один атом приходится (+12):2=(+6), записываем степени окисленя над элементами
К + 2 Cr +6 2 O -2 7

При определении этого понятия условно полагают, что связующие (валентные) электроны переходят к более электроотрицательным атомам (см. Электроотрицательность), а потому соединения состоят как бы из положительно и отрицательно заряженных ионов . Степень окисления может иметь нулевое, отрицательное и положительное значения, которые обычно ставятся над символом элемента сверху.

Нулевое значение степени окисления приписывается атомам элементов, находящихся в свободном состоянии, например: Cu, H 2 , N 2 , P 4 , S 6 . Отрицательное значение степени окисления имеют те атомы, в сторону которых смещается связующее электронное облако (электронная пара). У фтора во всех его соединениях она равна −1. Положительную степень окисления имеют атомы, отдающие валентные электроны другим атомам. Например, у щелочных и щелочноземельных металлов она соответственно равна +1 и +2. В простых ионах , подобных Cl − , S 2− , K + , Cu 2+ , Al 3+ , она равна заряду иона . В большинстве соединений степень окисления атомов водорода равна +1, но в гидридах металлов (соединениях их с водородом) - NaH, CaH 2 и других - она равна −1. Для кислорода характерна степень окисления −2, но, к примеру, в соединении с фтором OF 2 она будет +2, а в перекисных соединениях (BaO 2 и др.) −1. В некоторых случаях эта величина может быть выражена и дробным числом: для железа в оксиде железа (II, III) Fe 3 O 4 она равна +8/3.

Алгебраическая сумма степеней окисления атомов в соединении равна нулю, а в сложном ионе - заряду иона. С помощью этого правила вычислим, например, степень окисления фосфора в ортофосфорной кислоте H 3 PO 4 . Обозначив ее через x и умножив степень окисления для водорода (+1) и кислорода (−2) на число их атомов в соединении, получим уравнение: (+1) 3+x+(−2) 4=0, откуда x=+5. Аналогично вычисляем степень окисления хрома в ионе Cr 2 O 7 2− : 2x+(−2) 7=−2; x=+6. В соединениях MnO, Mn 2 O 3 , MnO 2 , Mn 3 O 4 , K 2 MnO 4 , KMnO 4 степень окисления марганца будет соответственно +2, +3, +4, +8/3, +6, +7.

Высшая степень окисления - это наибольшее положительное ее значение. Для большинства элементов она равна номеру группы в периодической системе и является важной количественной характеристикой элемента в его соединениях. Наименьшее значение степени окисления элемента, которое встречается в его соединениях, принято называть низшей степенью окисления; все остальные - промежуточными. Так, для серы высшая степень окисления равна +6, низшая −2, промежуточная +4.

Изменение степеней окисления элементов по группам периодической системы отражает периодичность изменения их химических свойств с ростом порядкового номера.

Понятие степени окисления элементов используется при классификации веществ, описании их свойств, составлении формул соединений и их международных названий. Но особенно широко оно применяется при изучении окислительно-восстановительных реакций . Понятие «степень окисления» часто используют в неорганической химии вместо понятия «валентность» (см.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Про семейное счастье и отношения