Про семейное счастье и отношения

Как сразу стали поступать запросы: «Где Пуассон? Где задачи на формулу Пуассона?» и т.п . И поэтому я начну с частного применения распределения Пуассона – ввиду большой востребованности материала.

Задача до боли эйфории знакома:

И следующие две задачи принципиально отличаются от предыдущих:

Пример 4

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет значение, меньшее, чем ее математическое ожидание.

Отличие состоит в том, что здесь речь идёт ИМЕННО о распределении Пуассона.

Решение : случайная величина принимает значения с вероятностями:

По условию, , и тут всё просто: событие состоит в трёх несовместных исходах :

Вероятность того, что случайная величина примет значение, меньшее, чем ее математическое ожидание.

Ответ :

Аналогичная задача на понимание:

Пример 5

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет положительное значение.

Решение и ответ в конце урока.

Помимо приближения биномиального распределения (Примеры 1-3), распределение Пуассона нашло широкое применение в теории массового обслуживания для вероятностной характеристики простейшего потока событий. Постараюсь быть лаконичным:

Пусть в некоторую систему поступают заявки (телефонные звонки, приходящие клиенты и т.д.). Поток заявок называют простейшим , если он удовлетворяет условиям стационарности , отсутствия последствий и ординарности . Стационарность подразумевает то, что интенсивность заявок постоянна и не зависит от времени суток, дня недели или других временнЫх рамок. Иными словами, не бывает «часа пик» и не бывает «мёртвых часов». Отсутствие последствий означает, что вероятность появления новых заявок не зависит от «предыстории», т.е. нет такого, что «одна бабка рассказала» и другие «набежали» (или наоборот, разбежались). И, наконец, свойство ординарности характеризуется тем, что за достаточно малый промежуток времени практически невозможно появление двух или бОльшего количества заявок. «Две старушки в дверь?» – нет уж, увольте, рубить удобнее по порядку.

Итак, пусть в некоторую систему поступает простейший поток заявок со средней интенсивностью заявок в некоторую единицу времени (минуту, час, день или в любую другую) . Тогда вероятность того, что за данный промежуток времени , в систему поступит ровно заявок, равна:

Пример 6

Звонки в диспетчерскую такси представляет собой простейший пуассоновский поток со средней интенсивностью 30 вызовов в час. Найти вероятность того, что: а) за 1 мин. поступит 2-3 вызова, б) в течение пяти минут будет хотя бы один звонок.

Решение : используем формулу Пуассона:

а) Учитывая стационарность потока, вычислим среднее количество вызовов за 1 минуту:
вызова – в среднем за одну минуту.

По теореме сложения вероятностей несовместных событий:
– вероятность того, что за 1 минуту в диспетчерскую поступит 2-3 вызова.

б) Вычислим среднее количество вызов за пять минут:

Во многих практически важных приложениях большую роль играет распределение Пуассона. Многие из числовых дискретных величин являются реализациями пуассоновского процесса, обладающего следующими свойствами:

  • Нас интересует, сколько раз происходит некое событие в заданной области возможных исходов случайного эксперимента. Область возможных исходов может представлять собой интервал времени, отрезок, поверхность и т.п.
  • Вероятность данного события одинакова для всех областей возможных исходов.
  • Количество событий, происходящих в одной области возможных исходов, не зависит от количества событий, происходящих в других областях.
  • Вероятность того, что в одной и той же области возможных исходов данное событие происходит больше одного раза, стремится к нулю по мере уменьшения области возможных исходов.

Чтобы глубже понять смысл пуассоновского процесса, предположим, что мы исследуем количество клиентов, посещающих отделение банка, расположенное в центральном деловом районе, во время ланча, т.е. с 12 до 13 часов. Предположим, требуется определить количество клиентов, приходящих за одну минуту. Обладает ли эта ситуация особенностями, перечисленными выше? Во-первых, событие, которое нас интересует, представляет собой приход клиента, а область возможных исходов - одноминутный интервал. Сколько клиентов придет в банк за минуту - ни одного, один, два или больше? Во-вторых, разумно предположить, что вероятность прихода клиента на протяжении минуты одинакова для всех одноминутных интервалов. В-третьих, приход одного клиента в течение любого одноминутного интервала не зависит от прихода любого другого клиента в течение любого другого одноминутного интервала. И, наконец, вероятность того, что в банк придет больше одного клиента стремится к нулю, если временной интервал стремится к нулю, например, становится меньше 0,1 с. Итак, количество клиентов, приходящих в банк во время ланча в течение одной минуты, описывается распределением Пуассона.

Распределение Пуассона имеет один параметр, обозначаемый символом λ (греческая буква «лямбда») – среднее количество успешных испытаний в заданной области возможных исходов. Дисперсия распределения Пуассона также равна λ, а его стандартное отклонение равно . Количество успешных испытаний Х пуассоновской случайной величины изменяется от 0 до бесконечности. Распределение Пуассона описывается формулой:

где Р(Х) - вероятность X успешных испытаний, λ - ожидаемое количество успехов, е - основание натурального логарифма, равное 2,71828, X - количество успехов в единицу времени.

Вернемся к нашему примеру. Допустим, что в течение обеденного перерыва в среднем в банк приходят три клиента в минуту. Какова вероятность того, что в данную минуту в банк придут два клиента? А чему равна вероятность того, что в банк придут более двух клиентов?

Применим формулу (1) с параметром λ = 3. Тогда вероятность того, что в течение данной минуты в банк придут два клиента, равна

Вероятность того, что в банк придут более двух клиентов, равна Р(Х > 2) = Р(Х = 3) + Р(Х = 4) + … + Р(Х = ∞) . Поскольку сумма всех вероятностей должна быть равной 1, члены ряда, стоящего в правой части формулы, представляют собой вероятность дополнения к событию Х≤ 2. Иначе говоря, сумма этого ряда равна 1 – Р(Х ≤ 2). Таким образом, Р(Х> 2) = 1 – Р(Х≤2) = 1 – [Р(Х = 0) + Р(Х = 1) + Р(Х = 2)]. Теперь, используя формулу (1), получаем:

Таким образом, вероятность того, что в банк в течение минуты придут не больше двух клиентов, равна 0,423 (или 42,3%), а вероятность того, что в банк в течение минуты придут больше двух клиентов, равна 0,577 (или 57,7%).

Такие вычисления могут показаться утомительными, особенно если параметр λ достаточно велик. Чтобы избежать сложных вычислений, многие пуассоновские вероятности можно найти в специальных таблицах (рис. 1). Например, вероятность того, что в заданную минуту в банк придут два клиента, если в среднем в банк приходят три клиента в минуту, находится на пересечении строки X = 2 и столбца λ = 3. Таким образом, она равна 0,2240 или 22,4%.

Рис. 1. Пуассоновская вероятность при λ = 3

Сейчас вряд ли кто-то будет пользоваться таблицами, если под рукой есть Excel с его функцией =ПУАССОН.РАСП() (рис. 2). Эта функция имеет три параметра: число успешных испытаний Х , среднее ожидаемое количество успешных испытаний λ, параметр Интегральная , принимающий два значения: ЛОЖЬ – в этом случае вычисляется вероятность числа успешных испытаний Х (только Х), ИСТИНА – в этом случае вычисляется вероятность числа успешных испытаний от 0 до Х.

Рис. 2. Расчет в Excel вероятностей распределения Пуассона при λ = 3

Аппроксимация биноминального распределения с помощью распределения Пуассона

Если число n велико, а число р - мало, биномиальное распределение можно аппроксимировать с помощью распределения Пуассона. Чем больше число n и меньше число р , тем выше точность аппроксимации. Для аппроксимации биномиального распределения используется следующая модель Пуассона.

где Р(Х) - вероятность X успехов при заданных параметрах n и р , n - объем выборки, р - истинная вероятность успеха, е - основание натурального логарифма, X - количество успехов в выборке (X = 0, 1, 2, …, n ).

Теоретически случайная величина, имеющая распределение Пуассона, принимает значения от 0 до ∞. Однако в тех ситуациях, когда распределение Пуассона применяется для приближения биномиального распределения, пуассоновская случайная величина - количество успехов среди n наблюдений - не может превышать число n . Из формулы (2) следует, что с увеличением числа n и уменьшением числа р вероятность обнаружить большое количество успехов уменьшается и стремится к нулю.

Как говорилось выше, математическое ожидание µ и дисперсия σ 2 распределения Пуассона равны λ. Следовательно, при аппроксимации биномиального распределения с помощью распределения Пуассона для приближения математического ожидания следует применять формулу (3).

(3) µ = Е(Х) = λ = np

Для аппроксимации стандартного отклонения используется формула (4).

Обратите внимание на то, что стандартное отклонение, вычисленное по формуле (4), стремится к стандартному отклонению в биномиальной модели – , когда вероятность успеха p стремится к нулю, и, соответственно, вероятность неудачи 1 – р стремится к единице.

Предположим, что 8% шин, произведенных на некотором заводе, являются бракованными. Чтобы проиллюстрировать применение распределения Пуассона для аппроксимации биномиального распределения, вычислим вероятность обнаружить одну дефектную шину в выборке, состоящей из 20 шин. Применим формулу (2), получим

Если бы мы вычислили истинное биномиальное распределение, а не его приближение, то получили бы следующий результат:

Однако эти вычисления довольно утомительны. В то же время, если вы используете Excel для вычисления вероятностей, то применение аппроксимации в виде распределения Пуассона становится излишним. На рис. 3 показано, что трудоемкость вычислений в Excel одинакова. Тем не менее, этот раздел, на мой взгляд, полезен понимаем того, что при некоторых условиях биноминальное распределение и распределение Пуассона дают близкие результаты.

Рис. 3. Сравнение трудоемкости расчетов в Excel: (а) распределение Пуассона; (б) биноминальное распределение

Итак, в настоящей и двух предыдущих заметках были рассмотрены три дискретных числовых распределения: , и Пуассона. Чтобы лучше представлять, как эти распределения соотносятся друг с другом приведем небольшое дерево вопросов (рис. 4).

Рис. 4. Классификация дискретных распределений вероятностей

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 320–328

Распределение Пуассона - случай биномиального распределения , когда число испытаний n достаточно большое, а вероятность p события A мала ().

Распределение Пуассона называют также распределением редких событий. Например, рождение за год трёх или четырёх близнецов, тот же закон распределения имеет число распавшихся в единицу времени атомов радиоактивного вещества и др.

Вероятность наступления редких событий вычисляется по формуле Пуассона :

,

где m число наступления события A ;

Среднее значение распределения Пуассона;

e =2,7183 - основание натурального логарифма.

Закон Пуассона зависит от одного параметра - λ (лямбда), смысл которого в следующем: он является одновременно математическим ожиданием и дисперсией случаной величины, распределённой по закону Пуассона.

Условия возникновения распределения Пуассона

Рассмотрим условия, при которых возникает распределение Пуассона.

Во-первых, распределение Пуассона является предельным для биномиального распределения , когда число опытов n неограниченно увеличивается (стремится к бесконечности) и одновременно вероятность p успеха в одном опыте неограниченно уменьшается (стремится к нулю), но так, что их произведение np сохраняется в пределе постоянным и равным λ (лямбде):

В математическом анализе доказано, что распределение Пуассона с параметром λ = np можно приближенно применять вместо биномиального, когда число опытов n очень велико, а вероятность p очень мала, то есть в каждом отдельном опыте событие A появляется крайне редко.

Во-вторых, распределение Пуассона имеет место, когда есть поток событий, называемым простейшим (или стационарным пуассоновским потоком) . Потоком событий называют последовательность таких моментов, как поступление вызовов на коммуникационный узел, приходы посетителей в магазин, прибытие составов на сортировочную горку и тому подобных. Пуассоновский поток обладает следующими свойствами:

  • стационарность: вероятность наступления m событий в определённый период времени постоянна и не зависит от начала отсчёта времени, а зависит только от длины участка времени;
  • ординарность: вероятность попадания на малый участок времени двух или более событий пренебрежимо мала по сравнению с вероятностью попадания на него одного события;
  • отсутствие последствия: вероятность наступления m событий в определённый период времени не зависит от того, сколько событий наступило в предыдущий период.

Характеристики случайной величины, распределённой по закону Пуассона

Характеристики случайной величины, распределённой по закону Пуассона:

математическое ожидание ;

стандартное отклонение ;

дисперсия .

Распределение Пуассона и расчёты в MS Excel

Вероятность распределения Пуассона P (m ) и значения интегральной функции F (m ) можно вычислить при помощи функции MS Excel ПУАССОН.РАСП. Окно для соответствующего расчёта показано ниже (для увеличения нажать левой кнопкой мыши).


MS Excel требует ввести следующие данные:

  • x - число событий m ;
  • среднее;
  • интегральная - логическое значение: 0 - если нужно вычислить вероятность P (m ) и 1 - если вероятность F (m ).

Решение примеров с распределением Пуассона

Пример 1. Менеджер телекоммуникационной компании решил рассчитать вероятность того, что в некотором небольшом городе в течении пяти минут поступят 0, 1, 2, ... вызовов. Выбраны случайные интервалы в пять минут, подсчитано число вызовов в каждый их интервалов и рассчитано среднее число вызовов: .

Вычислить вероятность того, что в течении пяти минут поступят 6 вызовов.

Решение. По формуле Пуассона получаем:

Тот же результат получим, используя функцию MS Excel ПУАССОН.РАСП (значение интегральной величины - 0):

P (6 ) = ПУАССОН.РАСП(6; 4,8; 0) = 0,1398.

Вычислим вероятность того, что в течение пяти минут поступят не более 6 вызовов (значение интегральной величины - 1):

P (≤6 ) = ПУАССОН.РАСП(6; 4,8; 1) = 0,7908.

Решить пример самостоятельно, а затем посмотреть решение

Пример 2. Производитель отправил в некоторый город 1000 проверенных, то есть исправных телевизоров. Вероятность того, что при транспортировке телевизор выйдет из строя, равна 0,003. То есть в этом случае действует закон распределения Пуассона. Найти вероятность того, что из всех доставленных телевизоров неисправными будут: 1) два телевизора; 2) менее двух телевизоров.

Продолжаем решать примеры вместе

Пример 3. В центр звонков клиентов поступает поток звонков с интенсивностью 0,8 звонков в минуту. Найти вероятность того, что за 2 минуты: а) не придёт ни одного звонка; б) придёт ровно один звонок; в) придёт хотя бы один звонок.

Во многих задачах практики приходится иметь дело со случайными величинами, распределенными по своеобразному закону, который называется законом Пуассона.

Рассмотрим прерывную случайную величину X , которая может принимать только целые неотрицательные значения:

причем последовательность этих значений теоретически не ограничена. Говорят, что случайная величина X распределена по закону Пуассона, если вероятность того, что она примет определенное значение т, выражается формулой

где а - некоторая положительная величина, называемая параметром закона Пуассона.

Ряд распределения случайной величины X, распределенной по закону Пуассона, имеет вид:

Убедимся прежде всего, что последовательность вероятностей, задаваемая формулой (5.9.1), может представлять собой ряд распределения, т.е. сумма всех вероятностей Р т равна единице. Имеем:

Но

На рисунке 5.9.1 показаны многоугольники распределения случайной величины X, распределенной по закону Пуассона, соответствующие различным значениям параметра а. В таблице 8 приложения приведены значения Р т для различных а.

Определим основные характеристики - математическое ожидание и дисперсию - случайной величины X , распределенной по закону Пуассона. По определению математического ожидания

Рис. 5.9.1.

Первый член суммы (соответствующий т = 0) равен нулю, следовательно, суммирование можно начинать с т = 1:

Обозначим т - 1 = к; тогда

Таким образом, параметр а представляет собой не что иное, как математическое ожидание случайной величины X.

Для определения дисперсии найдем сначала второй начальный момент величины X:

По ранее доказанному кроме того, следовательно,

Таким образом, дисперсия случайной величины , распределенной по закону Пуассона , равна ее математическому ожиданию а.

Это свойство распределения Пуассона часто применяется на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина X распределена по закону Пуассона. Для этого определяют из опыта статистические характеристики - математическое ожидание и дисперсию - случайной величины . Если их значения близки, то это может служить доводом в пользу гипотезы о пуассоновском распределении; резкое различие этих характеристик, напротив, свидетельствует против гипотезы.

Определим для случайной величины X, распределенной по закону Пуассона, вероятность того, что она примет значение не меньше заданного к. Обозначим эту вероятность R k:

Очевидно, вероятность R k может быть вычислена как сумма

Однако значительно проще определить ее из вероятности противоположного события:

В частности, вероятность того, что величина X примет положительное значение, выражается формулой

Мы уже упоминали о том, что многие задачи практики приводят к распределению Пуассона. Рассмотрим одну из типичных задач такого рода.

Пусть на оси абсцисс Ох случайным образом распределяются точки (рис. 5.9.2). Допустим, что случайное распределение точек удовлетворяет следующим условиям:

Рис. 5.9.2

  • 1. Вероятность попадания того или иного числа точек на отрезок / зависит только от длины этого отрезка, но не зависит от его положения на оси абсцисс. Иными словами, точки распределены на оси абсцисс с одинаковой средней плотностью. Обозначим эту плотность (т.е. математическое ожидание числа точек, приходящихся на единицу длины) через X.
  • 2. Точки распределяются на оси абсцисс независимо друг от друга, т.е. вероятность попадания того или другого числа точек на заданный отрезок не зависит от того, сколько их попало на любой другой отрезок, не перекрывающийся с ним.
  • 3. Вероятность попадания на малый участок Ах двух или более точек пренебрежимо мала по сравнению с вероятностью попадания одной точки (это условие означает практическую невозможность совпадения двух или более точек).

Выделим на оси абсцисс определенный отрезок длины / и рассмотрим дискретную случайную величину X - число точек, попадающих на этот отрезок. Возможные значения величины будут

Так как точки попадают на отрезок независимо друг от друга, то теоретически не исключено, что их там окажется сколь угодно много, т.е. ряд (5.9.6) продолжается неограниченно.

Докажем, что случайная величина X имеет закон распределения Пуассона. Для этого вычислим вероятность Р т того, что на отрезок / попадет ровно т точек.

Сначала решим более простую задачу. Рассмотрим на оси Ох малый участок Ах и вычислим вероятность того, что на этот участок попадет хотя бы одна точка. Будем рассуждать следующим образом. Математическое ожидание числа точек, попадающих на этот участок, очевидно, равно ХАх (так как на единицу длины попадает в среднем X точек). Согласно условию 3 для малого отрезка Ах можно пренебречь возможностью попадания на него двух или больше точек. Поэтому математическое ожидание ХАх числа точек, попадающих на участок Ах, будет приближенно равно вероятности попадания на него одной точки (или, что в наших условиях равнозначно, хотя бы одной).

Таким образом, с точностью до бесконечно малых высшего порядка при Ах -» 0 можно считать вероятность того, что на участок Ах попадет одна (хотя бы одна) точка, равной ХАх, а вероятность того, что не попадет ни одной, равной 1 - ХАх.

Воспользуемся этим для вычисления вероятности Р т попадания на отрезок / ровно т точек. Разделим отрезок / на п равных частей длиной . Условимся называть элементарный отрезок Ах «пустым»,

если в него не попало ни одной точки, и «занятым», если в него попала хотя бы одна. Согласно вышедоказанному вероятность того, что отрезок Ах окажется «занятым», приближенно равна ; вероятность

того, что он окажется «пустым», равна

Так как согласно условию 2 попадания точек в неперекрывающиеся отрезки независимы, то наши п отрезков можно рассмотреть как п не зависимых «опытов», в каждом из которых отрезок может быть «занят» с вероятностью Найдем вероятность того, что среди п отрезков будет ровно

т «занятых». По теореме о повторении опытов эта вероятность равна

или, обозначая XI = а,

При достаточно большом п эта вероятность приближенно равна вероятности попадания на отрезок / ровно т точек, так как попадание двух или больше точек на отрезок Ах имеет пренебрежимо малую вероятность. Для того чтобы найти точное значение Р т, нужно в выражении (5.9.7) перейти к пределу при п -> оо:

Преобразуем выражение, стоящее под знаком предела:

Первая дробь и знаменатель последней дроби в выражении (5.9.9) при п -> оо, очевидно, стремятся к единице. Выражение от п не зависит. Числитель последней дроби можно преобразовать так:

При и выражение (5.9.10) стремится к е~ а.

Таким образом, доказано, что вероятность попадания ровно т точек в отрезок / выражается формулой

где а = XI, т.е. величина X распределена по закону Пуассона с параметром а = XI.

Отметим, что величина а по смыслу представляет собой среднее число точек, приходящееся на отрезок I.

Величина R, (вероятность того, что величина X примет положительное значение) в данном случае выражает вероятность того , что на отрезок I попадет хотя бы одна точка :

Таким образом, мы убедились, что распределение Пуассона возникает там, где какие-то точки (или другие элементы) занимают случайное положение независимо друг от друга, и подсчитывается количество этих точек, попавших в какую-то область. В нашем случае такой «областью» был отрезок / на оси абсцисс. Однако наш вывод легко распространить и на случай распределения точек на плоскости (случайное плоское поле точек) и в пространстве (случайное пространственное поле точек). Нетрудно доказать, что если соблюдены условия:

  • 1) точки распределены в поле статистически равномерно со средней плотностью Х
  • 2) точки попадают в неперекрывающиеся области независимым образом;
  • 3) точки появляются поодиночке, а не парами, тройками и т.д., то число точек X, попадающих в любую область D (плоскую или пространственную), распределяется по закону Пуассона:

где а - среднее число точек, попадающих в область D.

Для плоского случая

где S D - площадь области D для пространственного

где V D - объем области D.

Заметим, что для наличия пуассоновского распределения числа точек, попадающих в отрезок или область, условие постоянной плотности (X = const) несущественно. Если выполнены два других условия, то закон Пуассона все равно имеет место, только параметр а в нем приобретает другое выражение: он получается не простым умножением плотности X на длину, площадь или объем области, а интегрированием переменной плотности по отрезку, площади или объему (подробнее об этом см. подраздел 19.4).

Наличие случайных точек, разбросанных на линии, на плоскости или объеме - не единственное условие, при котором возникает распределение Пуассона. Можно, например, доказать, что закон Пуассона является предельным для биномиального распределения:

если одновременно устремлять число опытов п к бесконечности, а вероятность р - к нулю, причем их произведение пр сохраняет постоянное значение:

Действительно, это предельное свойство биномиального распределения можно записать в виде:

Но из условия (5.9.13) следует, что

Подставляя (5.9.15) в (5.9.14), получим равенство

которое только что было доказано нами по другому поводу.

Это предельное свойство биномиального закона часто находит применение на практике. Допустим, что производится большое количество независимых опытов п, в каждом из которых событие А имеет очень малую вероятность р. Тогда для вычисления вероятности Р т „ того, что событие А появится ровно т раз, можно воспользоваться приближенной формулой

где пр = а - параметр того закона Пуассона, которым приближенно заменяется биномиальное распределение.

От этого свойства закона Пуассона - выражать биномиальное распределение при большом числе опытов и малой вероятности события - происходит его название, часто применяемое в учебниках статистики: закон редких явлений.

Рассмотрим несколько примеров, связанных с пуассоновским распределением, из различных областей практики.

Пример 1. На автоматическую телефонную станцию поступают вызовы со средней плотностью К вызовов в час. Считая, что число вызовов на любом участке времени распределено по закону Пуассона, найти вероятность того, что за две минуты на станцию поступит ровно три вызова.

Решение. Среднее число вызовов за две минуты равно:

По формуле (5.9.1) вероятность поступления ровно трех вызовов

Пример 2. В условиях предыдущего примера найти вероятность того, что за две минуты придет хотя бы один вызов.

Решение. По формуле (5.9.4) имеем:

Пример 3. В тех же условиях найти вероятность того, что за две минуты придет не менее трех вызовов.

Решение. По формуле (5.9.4) имеем:

Пример 4. На ткацком станке нить обрывается в среднем 0,375 раза в течение часа работы станка. Найти вероятность того, что за смену (8 часов) число обрывов нити будет заключено в границах 2 и 4 (не менее 2 и не более 4 обрывов).

Решение. Очевидно,

имеем:

По таблице 8 приложения при а = 3

Пример 5. С накаленного катода за единицу времени вылетает в среднем q(t) электронов, где t - время, протекшее с начала опыта. Найти вероятность того, что за промежуток времени длительности т, начинающийся в момент t 0 , с катода вылетит ровно т электронов.

Решение. Находим среднее число электронов а, вылетающих с катода за данный отрезок времени. Имеем:

По вычисленному а определяем искомую вероятность:

Пример 6. Число осколков, попадающих в малоразмерную цель при заданном положении точки разрыва, распределяется по закону Пуассона. Средняя плотность осколочного поля, в котором оказывается цель при данном положении точки разрыва, равна 3 оск. /м 2 . Площадь цели равна S = 0,5 м 2 . Для поражения цели достаточно попадания в нее хотя бы одного осколка. Найти вероятность поражения цели при данном положении точки разрыва.

Решение, а = XS= 1,5. По формуле (5.9.4) находим вероятность попадания хотя бы одного осколка:

(Для вычисления значения показательной функции е~ а пользуемся табл. 2 приложения.)

Пример 7. Средняя плотность болезнетворных микробов в одном кубическом метре воздуха равна 100. Берется на пробу 2 дм 3 воздуха. Найти вероятность того, что в нем будет обнаружен хотя бы один микроб. Решение. Принимая гипотезу о пуассоновском распределении числа микробов в объеме, находим:

Пример 8. По некоторой цели производится 50 независимых выстрелов. Вероятность попадания в цель при одном выстреле равна 0,04. Пользуясь предельным свойством биномиального распределения (формула (5.9.17)), найти приближенно вероятность того, что в цель не попадет ни одного снаряда, попадет один снаряд, два снаряда.

Решение. Имеем а = пр = 50 0,04 = 2. По таблице 8 приложения находим вероятности:

  • О способах экспериментального определения этих характеристик см. далее, главы7 и 14.

При рассмотрении маловероятных событий, имеющих место в большой серии независимых испытаний некоторое (конечное) число раз, вероятности появления этих событий подчиняются закону Пуассона или закону редких событий , где λ равна среднему числу появления событий в одинаковых независимых испытаниях, т.е. λ = n × p, где p – вероятность события при одном испытании, e = 2,71828 , m -частота данного события, математическое ожидание M[X] равно λ.

Ряд распределения закона Пуассона имеет вид:

Числовые характеристики случайной величины Х

Математическое ожидание распределения Пуассона
M[X] = λ

Дисперсия распределения Пуассона
D[X] = λ

Закон Пуассона можно применять для совокупностей, достаточно больших по объему (n > 100) и имеющих достаточно малую долю единиц, обладающих данным признаком (p < 0,1).
При этом распределение Пуассона можно применить, когда на только не известно значение n – общего числа возможных результатов, но и когда не известно конечное число, которое n может представлять. Там, где есть среднее число случаев наступления события, вероятность наступления события описывается членами разложения:
.
Поэтому соответствующие вероятности равны:

Поэтому, если среднее число землетрясений равно одному в месяц, то m=1 и вероятность случаев в месяц будет следующей, рассчитанной по приблизительному значению e - m =0,3679:

Пример . В результате проверки 1000 партий одинаковых изделий получено следующее распределение количества бракованных изделий в партии:

Определим среднее число бракованных изделий в партии:
.
Находим теоретические частоты закона Пуассона:


Эмпирически и найденное теоретическое распределение Пуассона:

604 306 77 12 1
606 303 76 13 2

Сопоставление свидетельствует о соответствии эмпирического распределения распределению Пуассона.

Пример №2 . Отдел технического контроля проверил n партий однотипных изделий и установил, что число Х нестандартных изделий в одной партии имеет эмпирическое распределение, приведенное в таблице, в одной строке которой указано количество x i нестандартных изделий в одной партии, а в другой строке – количество n i партий, содержащих x i нестандартных изделий. Требуется при уровне значимости α=0.05 проверить гипотезу о том, что случайная величина Х (число нестандартных изделий в одной партии) распределена по закону Пуассона .

x i 0 1 2 3 4 5
n i 370 360 190 63 14 3

Проверим гипотезу о том, что Х распределено по закону Пуассона с помощью сервиса проверка статистических гипотез .


где p i - вероятность попадания в i-й интервал случайной величины, распределенной по гипотетическому закону; λ = x ср.
i = 0: p 0 = 0.3679, np 0 = 367.88
i = 1: p 1 = 0.3679, np 1 = 367.88
i = 2: p 2 = 0.1839, np 2 = 183.94
i = 3: p 3 = 0.0613, np 3 = 61.31
i = 4: p 4 = 0.0153, np 4 = 15.33
i = 5: p 5 = 0.0031, np 5 = 3.07
i = 6: 17=14 + 3
i = 6: 18.39=15.33 + 3.07
i Наблюдаемая частота n i p i Ожидаемая частота np i
0 370 0.37 367.88 0.0122
1 360 0.37 367.88 0.17
2 190 0.18 183.94 0.2
3 63 0.0613 61.31 0.0464
4 17 0.0153 18.39 0.11
1000 0.53

Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение K набл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: }

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Про семейное счастье и отношения